Double Schubert polynomials for the classical Lie groups
نویسندگان
چکیده
For each infinite series of the classical Lie groups of type B, C or D, we introduce a family of polynomials parametrized by the elements of the corresponding Weyl group of infinite rank. These polynomials represent the Schubert classes in the equivariant cohomology of the corresponding flag variety. They satisfy a stability property, and are a natural extension of the (single) Schubert polynomials of Billey and Haiman, which represent non-equivariant Schubert classes. When indexed by maximal Grassmannian elements of the Weyl group, these polynomials are equal to the factorial analogues of Schur Qor P -functions defined earlier by Ivanov. Résumé Pour chaque serie infinie des groupe de Lie classiques de type B, C ou D, nous preséntons une famille de polynômes indexées par de élèments de groupe de Weyl correspondant de rang infini. Ces polynômes représent des classes de Schubert dans la cohomologie équivariante des variétés de drapeaux. Ils ont une certain proprieté de stabilité, et ils extendent naturellement des polynômes Schubert (simples) de Billey et Haiman, que represent des classes de Schubert dans la cohomologie non-équivariante. Quand ils sont indexées par des élèments Grassmanniennes de groupes de Weyl, ces polynômes sont equales avec des analogues factorielles de fonctions Q et P de Schur, que été studié en avant d’Ivanov.
منابع مشابه
Double Schubert Polynomials for the Classical Groups
For each infinite series of the classical Lie groups of type B, C or D, we introduce a family of polynomials parametrized by the elements of the corresponding Weyl group of infinite rank. These polynomials represent the Schubert classes in the equivariant cohomology of the appropriate flag variety. They satisfy a stability property, and are a natural extension of the (single) Schubert polynomia...
متن کاملSchubert Polynomials and Degeneracy Locus Formulas
In previous work [T6], we employed the approach to Schubert polynomials by Fomin, Stanley, and Kirillov to obtain simple, uniform proofs that the double Schubert polynomials of Lascoux and Schützenberger and Ikeda, Mihalcea, and Naruse represent degeneracy loci for the classical groups in the sense of Fulton. Using this as our starting point, and purely combinatorial methods, we obtain a new pr...
متن کاملUniversal Schubert Polynomials
The aim of this paper is to introduce some polynomials that specialize to all previously known Schubert polynomials: the classical Schubert polynomials of Lascoux and Schützenberger [L-S], [M], the quantum Schubert polynomials of Fomin, Gelfand, and Postnikov [F-G-P], and quantum Schubert polynomials for partial flag varieties of Ciocan-Fontanine [CF2]. There are also double versions of these u...
متن کاملar X iv : m at h / 05 02 36 3 v 1 [ m at h . C O ] 1 6 Fe b 20 05 CHAINS IN THE BRUHAT ORDER
We study a family of polynomials whose values express degrees of Schubert varieties in the generalized complex flag manifold G/B. The polynomials are given by weighted sums over saturated chains in the Bruhat order. We derive several explicit formulas for these polynomials, and investigate their relations with Schubert polynomials, harmonic polynomials, Demazure characters, and generalized Litt...
متن کاملChains in the Bruhat Order
We study a family of polynomials whose values express degrees of Schubert varieties in the generalized complex flag manifold G/B. The polynomials are given by weighted sums over saturated chains in the Bruhat order. We derive several explicit formulas for these polynomials, and investigate their relations with Schubert polynomials, harmonic polynomials, Demazure characters, and generalized Litt...
متن کامل